Standard Form of a Quadratic Equation: $f(x) = Ax^2 + Bx + C$ Finding A

(1/2)(2nd Diff) y intercept

For each table below, find the 2nd difference.

x	f(x)	15+	2nd
-2	-16	111	111
-1	-4	12	1111
0	0	4	-8
1	-4	-4	-8
2	-16	-12	-8

x	f(x)	St	2nd
-2	5	111	111
-1	-1	-6	1///
0	-3	-2	4
1	-1	2	4
2	5	6	4

x	f(x)	Ist	2nd
-2	17	////	111
-1	6	-11	1111
0	1	-5	6
1	2	1	L
2	9	7	6

Equation: $f(x) = -4x^2$

Equation: $f(x) = 2x^2 - 3$

Equation: $f(x) = 3x^2 - 2x + 1$

Table Talk: What relationship do you notice between the value of A in the equation and the second difference from your table?

The value of
$$t$$
 is $1/2$ the second difference. $1/2(-8) = -4$ $1/2(4) = 2$ $1/2$

II. Finding C

	x	f(x)	
	-2	10	
0	-1	η	
	0	69	
	1	7	
	2	10	

x	f(x)
-2	+3
-1	-3
0	-5
1	-3
2	3

Equation: $f(x) = x^2 + 6$

Equation:
$$f(x) = 2x^2 - 5$$

Equation:
$$f(x) = 3x^2 + 4x + 5$$

Table Talk: What relationship do you notice between the value of C in the equation and the y-intercept in your table?

The value of C and the y-intercept in the table are the same.

III. Putting it all Together - Write a quadratic equation for each problem below.

ı	X	f(x)	Ist	2nd
	-2	16	1111	///
7.	-1	10	-6	111
	0	8	-2	4
	1	10	2	4
	2	16	4	4

a) Write the quadratic equation to model the data in the table.

$$f(x) = 2x^2 + 8$$

- b) Put your equation in y = in your calculator
- c) Does the table ($2^{nd} \rightarrow Graph$) match your table?

$$A = 1/2(4) = 2$$

 $C = 8$

2.

a) Write the quadratic equation to model the data in the table.

$$-f(x) = 2x^2 + 8$$

- b) Put your equation in y = in your calculator
- c) Does the table ($2^{nd} \rightarrow Graph$) match your table? NO!

WHY NOT? What are we missing?

$$f(x) = 2x^{2} + Bx + 8$$

$$(1,6)$$

$$6 = 2(1)^{2} + B(1) + 8$$

$$6 = 2 + B + 8$$

$$6 = 10 + B$$

$$B = -4$$

2

B = find

C = 0

3=2+2B 1= 2B

 $3 = 1/2(z)^2 + \beta(2)$