Radical Equation: An equation with a \qquad inside the \qquad .

Example:
When we solve equations in math we use \qquad operations to help us get the \qquad by itself.

Steps:

- \qquad the square root
- Undo the square root.
- How do you UNDO a square root?
- Solve for x . Depending on the problem, this might be solving a \qquad equation or a \qquad equation. What method(s) might be the best choices to solve a quadratic equation?
- Ensure you do not have any extraneous solutions.
- How do we make sure all of our solutions are correct?

Examples:

1. $\sqrt{x}=8$
2. $\sqrt{x+3}=5$
3. $\sqrt{x}+9=3$
4. $\sqrt{3 x}+5=17$
5. $2 \sqrt{x-1}=18$
6. $\sqrt{\frac{x}{5}}=3$
7. $\sqrt{x+2}=\sqrt{x-6}$
8. $\sqrt{x}=\sqrt{2 x-7}$
9. $\sqrt{x^{2}-5}=\sqrt{x+1}$
\qquad
Solve each radical equation. Show all work! Be sure to check your answers for extraneous solutions (on paper \& DESMOS)
10. $2=\sqrt{4 m}$
11. $\sqrt{\frac{v}{8}}=9$
12. $3=\sqrt{r+1}$
13. $\sqrt{n^{2}}=9$
14. $-3=\sqrt{x+4}-7$
15. $\sqrt{x}+7=0$
16. $10=\sqrt{x-1}$
17. $10+\sqrt{\frac{n}{3}}=16$
18. $\sqrt{10 a+4}=8$
19. $7=\sqrt{2-b}+5$
20. $\sqrt{n}=\sqrt{2 n-5}$
21. $\sqrt{18-3 n}=\sqrt{n^{2}}$
22. $\sqrt{22-2 k}=\sqrt{\frac{k}{5}}$
23. $v=\sqrt{4 v+5}$
24. $2 x=\sqrt{24 x-20}$
25. $\sqrt{3 r+8}-\sqrt{9 r+8}=0$
26. $8 n=7 n+\sqrt{12-n}$
27. $\frac{b}{2}=\sqrt{\frac{5 b-6}{4}}$

Use DESMOS to solve (work is not necessary).
19. $v+10=\sqrt{10-v}$
20. $b+3=\sqrt{6 b+25}$

Examples:

1. $x=\sqrt{56-x}$
2. $\sqrt{-14+9 x}-x=0$
3. $\sqrt{-7+8 x}-x=0$
4. $x-6=\sqrt{21-4 x}$

Is there a way to find the solution to these equations using DESMOS?
5. $x-6=\sqrt{21-4 x}$

Take the left side of the equation and set it equal to y. What type of function is this?
Take the right side of the equation and set it equal to y. What type of function is this?
Do these functions intersect?
If not, there is NO SOLUTION
If they intersect, the x value of the point of intersection is the solution.
6. $\sqrt{6 x-29}=x-4$
7. $x=\sqrt{4 x-24}+6$
8. $-x+\sqrt{6 x-17}=-2$
9. $5 \sqrt{x-4}-x=0$
10. $2 \sqrt{3 x-4}-7=x-7$

Unit 8 Lesson 3 Notes - The Square Root Function

We previously studied a quadratic that in its most basic form is \qquad
Inverse Operations are operations that \qquad or " \qquad " each other.

When we studied quadratics previously we learned that to undo squaring (second power) we must \qquad .

Complete the table to help you graph the function $y=\sqrt{x}$ (the Square Root Parent Function).

\mathbf{x}	\mathbf{y}
-9	
-4	
-1	
0	
1	
4	
9	

Key Features:
Anchor Point: \qquad
Max or Min
x-intercept(s): \qquad
y-intercept: \qquad
Domain: \qquad
Range: \qquad
Increasing: \qquad
Decreasing: \qquad

$$
y=a \sqrt{x-h}+k
$$

Part A: The Effect of a

1. $y=-\sqrt{x}$

What was the transformation?

Domain:

Range:
x -intercept:
y -intercept:
Increasing:
Decreasing:
2. $y=3 \sqrt{x}$

What was the transformation?

Domain:

Range:
x-intercept
y-intercept:
3. $y=\frac{1}{2} \sqrt{x}$
Domain:
Range:
x-intercept:
y-intercept:

What was the transformation?

Part B: The Effect of b

1. $y=\sqrt{x-4}$
2. $y=\sqrt{x+5}$

What was the transformation?
What was the transformation?

Domain:
Range:
x-intercept:
y-intercept:

Part C: The Effect of k

1. $y=\sqrt{x}-4$

What was the transformation?

Domain:
Range:
x-intercept:
y-intercept:

Part D: Putting it all together

1. $y=-\sqrt{x+2}-3$

What was the transformation?

Domain:

Range:
x -intercept:
y-intercept:
2. $y=\sqrt{x}+5$

What was the transformation?

Domain:

Range:
x-intercept:
y-intercept:
3. $y=2 \sqrt{x+3}$

What was the transformation?

Domain:
Range:
x-intercept:
y-intercept:

Examples: Describe the transformations from the parent graph of $\boldsymbol{y}=\sqrt{\boldsymbol{x}}$.
a. $y=\sqrt{x+2}-4$
b. $y=3 \sqrt{x-5}+2$
c. $y=-\frac{1}{2} \sqrt{x}+3$
\qquad

Use the graph provided to identify key features of the function

1. $y=2 \sqrt{x}-4$

Key Features:

Transformations: \qquad
x-intercept(s): \qquad
y-intercept: \qquad
Anchor Point: \qquad
Maximum or Minimum
Domain: \qquad
Range: \qquad
Increasing: \qquad
Decreasing: \qquad

Use Desmos to graph each function and identify the key features.
2. $y=\sqrt{x}+1$

Description of Transformation(s):

Domain:
Range:
y - intercept:
x - intercept:
3. $y=-\sqrt{x-2}$

Description of Transformation(s):

Domain: Range:
x - intercept: $\quad y$ - intercept:
4. $y=4 \sqrt{x}$

Description of Transformation(s):

Domain:
Range:
x - intercept:
y - intercept:
5. $y=\frac{1}{2} \sqrt{x}$

Description of Transformation(s):

Domain:
x - intercept:
y - intercept:

Write the equation that represents the transformations from the parent graph $y=\sqrt{x}$.
6. Up 3 units, left 2 units
7. Reflected over the x -axis, right 2 units
8. Vertical compression by a scale factor of $\frac{4}{5}$, right 4 units, down 8 units
9. Vertical stretch by a scale factor of 7 , reflected over the x-axis, left 10 units

Identify which graph(s) have the following characteristics. Choose all that apply.

10. Has a minimum
13. Has a y-intercept
16. Is symmetric about the y-axis
19. As x increase, y rises and then falls
11. Has a maximum
14. Has exactly 1 zero
17. Has a domain of all real numbers
20. Has a positive a value
12. Has a vertex
15. Has a line of symmetry
18. Has a range of all real numbers
21. As x increases, y decreases slowly for all values of x .

Unit 8 Lesson 4 - Rational Exponents and Radicals

I. Radical Vocabulary

Note: When taking a square root you do not need to write $\sqrt[2]{16}$. When you write $\sqrt{16}$ it is understood that the index is 2 .
Rational Exponent: \qquad
Example:

Examples:
Rewrite each rational exponent as a radical.

1. $5^{\frac{1}{2}}=$
2. $5^{\frac{1}{3}}=$
3. $5^{\frac{2}{3}}=$
4. $6^{\frac{3}{5}}=$
5. $m^{\frac{3}{2}}=$
6. $p^{\frac{1}{2}}=$
7. $12 x^{\frac{5}{6}}=$
8. $(12 x)^{\frac{5}{6}}=$
9. $(x y)^{\frac{1}{2}}=$

Rewrite each radical as a rational exponent.
10. $\sqrt[3]{a}=$
11. $\sqrt[2]{x^{3}}=$
12. $\sqrt[2]{16 y}=$
13. $\sqrt[3]{7 b^{2}}=$
14. $\sqrt[3]{x^{4}}=$
15. $\sqrt[3]{27 x^{3} y^{5} z}=$
16. $\sqrt[5]{y^{2}}=$
17. $4 \cdot \sqrt[5]{n^{10}}=$

Unit 8 Lesson 4 Homework and Review

1. Rational exponents can be re-written as radicals!

In radical form, \mathbf{b} is the \qquad .

In exponential form, \mathbf{b} is the \qquad of the exponent. In radical form, \mathbf{a} is the \qquad .

In exponential form, \mathbf{a} is the \qquad of the exponent.

2. Given the expression $\sqrt[3]{54}$, write an expression utilizing a rational exponent that would yield the same numerical value.
3. Rewrite each expression with a rational exponent.
a. $(\sqrt[5]{63})^{3}$
b. $\sqrt[6]{127^{4}}$
c. $(\sqrt[3]{-25})^{4}$
d. $(\sqrt{2 x})^{5}$
e. $\left(\sqrt[3]{-7 x^{2} y}\right)^{2}$
f. $\sqrt[4]{9 x}$
f. $9\left(\sqrt[4]{x^{5}}\right)$
g. $\sqrt[3]{(5 x y)^{2}}$
4. Rewrite each expression in radical form.
a. $(-57)^{\frac{4}{3}}$
b. $13^{\frac{3}{2}}$
c. $\left(204^{5}\right)^{\frac{1}{8}}$
d. $(3 x)^{\frac{4}{3}}$
e. $(3 x)^{2.5}$
f. $\left(-27 x^{3} y\right)^{\frac{2}{5}}$
g. $(7 x)^{\frac{1}{2}}$
h. $8(x)^{\frac{3}{4}}$
5. Solve each square root equation. Be sure to check for extraneous solutions.
a. $\sqrt{9 a+3}=\sqrt{4 a-7}$
b. $7=\sqrt{x+16}+2$
c. $x=\sqrt{12-x}$
d. $-x=\sqrt{x+20}$
e. Desmos: $\sqrt{6 x+19}=2+x$
f. Desmos: $x-4=\sqrt{10-3 x}$
6. Write the equation that represents the transformations from the parent graph $y=\sqrt{x}$.
a. Translated 4 units up, vertical compression by a scale factor of $2 / 3$, and reflected over the x-axis.
b. Translated left 3 units, vertical stretch by a scale factor of 4 , down 6 units.
7. Use the graph provided to identify key features of the function.
$y=\sqrt{x+1}-2$

Transformations: \qquad
Anchor Point: \qquad
X-Intercept: \qquad
Y- Intercept: \qquad
Maximum or Minimum (Circle)
Domain: \qquad
Range: \qquad
Increasing: \qquad
Decreasing: \qquad
8. Use Desmos to graph each function and identify the key features.
a. $y=-\sqrt{x}+1$
b. $y=2 \sqrt{x+3}$

Transformation(s):
Transformation(s):

Domain:
Range:
x - intercept:

> y - intercept:

Domain:
x - intercept:
Range:
c. $y=5+\frac{1}{2} \sqrt{x-2}$
d. $y=\sqrt{x-1}-4$

Transformation(s):
Transformation(s):

Domain:
Range:
x - intercept:
y - intercept:

Domain:
x - intercept:

Range:

y - intercept:

