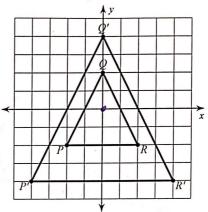

I. Review	
During our last Geometry unit we studied three types of transformations	
1. Translations	
2. Rotations	
3. Reflections	
All of these transformations were an <u>isometry</u> meaning the transformation had a 1:1 correspondence and thus were congruent.	preserved size and shape. This means that the pre-image and the image
II. Dilations	
<u>Dilation</u> : A transformation where the figure is either <u>Chlavica</u> or <u>the corresponding sides.</u>	in size by a scale factor. The scale factor (K) is the ratio of
original original center	
An <u>Chlargement</u> occurs when the scale factor (ratio of corresponding	g sides) is <u>greater</u> than <u>l</u> .
A reduction occurs when the scale factor (ratio of corresponding s	ides) is between 0 and 1.
Notation for a dilation with a scale factor or magnitude of k is or	(Kx, ky)
Table Talk: Is a dilation an isometry? Why or why not? NO > dilations do not produce figures that	- are the same size, therefore the figures are not ≅
Dilations produce figures that are SIN	MILAR. The figures have the same
Dilations produce figures that are SIN Shape but are not the same size.	


Unit 6 Lesson 3 Notes Dilations

Examples: List the ordered pairs for the pre-image then list the ordered pairs for the image. Based on these ordered pairs, determine the scale factor for each dilation.

Pre-Image:

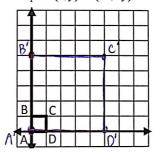
Scale Factor: $\frac{1}{2}$ Function Rule: $f(X_1Y) = \sqrt{2}X$, $\sqrt{2}Y$

Pre-Image:

Scale Factor: 2

Function Rule: f(x,y) = (2x, 2y)

Table Talk: What is the relationship between the ordered pair for the pre-image, the image, and the scale factor?


Multiply both the X and y by the scale factor.

1. A dilation has a center of (0,0). Find the image of each point for the scale factor given. Then identify each as an enlargement or reduction.

A.
$$N(-4,-7); k = 0.1 \ (-,4,-,7)$$

Reduction

B.
$$P(-6,2); k = 1.5 \ (-9, 3)$$

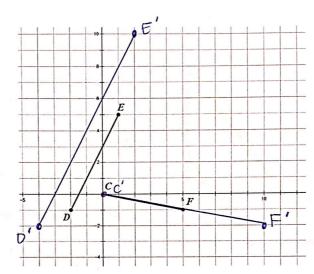
Enlayement

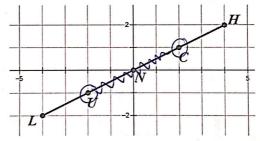
2. Graph $M(x, y) \rightarrow (5x, 5y)$

Dilation Investigation #1:

1. Dilate \overline{DE} with center of dilation (0,0) by a scale factor of 2.

$$D(-2,-1) \Rightarrow P'(-4,-2)$$


2. Dilate $\overline{\mathit{CF}}$ with center of dilation $\mathcal{C}(0,0)$ by a scale factor of 2.


$$C(0,0) \Rightarrow C'(0,0)$$

$$F(5,1) \Rightarrow F'(10,-2)$$

CF and C'F' lie on the same line Segment ⇒ they are Coincidental. You Try: Dilate IH by a scale factor of 1/2 about the origin.

$$H(4,2) \Rightarrow H'(2,1)$$

Dilation Investigation #2:

- 1. Graph $\triangle ABC$ where A(0,0), B(3,0), and C(0,4). Label each point.
- 2. Dilate $\triangle ABC$ by a scale factor of 2 centered at the origin.
- 3. What can you observe about the relationship between the length of the preimage segments and the image segments? The Image Scaments are twice the longth
- 4. Trace \overline{AC} and $\overline{A'C'}$ in red. Are the corresponding pre-image and image segments parallel or collinear?

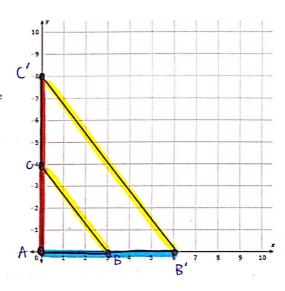
 (same line)
- 5. \overline{AB} and $\overline{A'B'}$ in blue. Are the corresponding pre-image and image segments parallel or collinear?

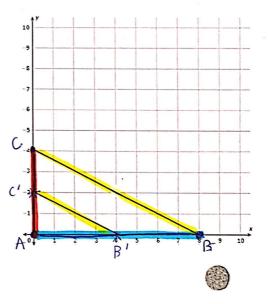
 (same line)
- 6. BC and B'C' in yellow. Are the corresponding pre-image and image segments parallel or collinear?

 (same line)
- 7. What can you observe about the relationships between the preimage angles and the image angles?

 You may use patty paper to verify your conjecture. The angle Measures stay

 the Same.


You Try:


- 1. Graph $\triangle ABC$ where A(8,4), B(4,2), C(0,4). Label each point.
- 2. Dilate $\triangle ABC$ by a scale factor of $\frac{1}{2}$ centered at the origin.
- 3. What can you observe about the relationship between the length of the preimage segments and the image segments? The IMage Segments are 1/2 the pre-image
- 4. Trace \overline{AC} and $\overline{A'C'}$ in red. Are the corresponding pre-image and image segments parallel or collinear?

 (same line)
- 5. \overline{AB} and $\overline{A'B'}$ in blue. Are the corresponding pre-image and image segments parallel or collinear?

 (same line)
- 6. \overline{BC} and $\overline{B'C'}$ in yellow. Are the corresponding pre-image and image segments parallel or collinear?

 (same line)
- 7. What can probserve about the relationships between the preimage angles and the rage angles? You may that paper to verify your conjecture. The angue we as Stay the same.

Conciusions:
A dilation is a <u>transformation</u> that preserves the <u>Shape</u> of a geometric figure, but not necessarily the <u>Size</u> . In can <u>EN large</u> (stretch) or <u>VCdUCE</u> (shrink) a figure.
Dilations require:
Center of dilation: a <u>OVACUA</u> <u>Pair</u> about which all points are expanded or contracted.
• Scale factor/magnitude: a <u>Vatio</u> comparing the image (transformed figure) to the pre-image (original figure) that determines how much the figure is enlarged or reduced.
Properties of Dilations:
• When a line segment passes through the center of dilation, the line segment and its image lie on the same line. We call these lines
When a line segment does not pass through the center of dilation, the line segment and its image are
• The length of the image of a line segment is equal to the length of the preimage line segment multiplied by the Scale
• The distance between the center of a dilation and any point on the image is <u>equal to</u> the scale factor multiplied by the distance between the dilation center and the corresponding point on the pre-image.
• Dilations preserve Ahgle Mcasures.
•