## Unit 5 Lesson I - Solving Quadratics by Factoring (finding x-intercepts)

To <u>SOLVE</u> means to find the values of the <u>Variable</u> that will make the equation <u>Truv</u>.

be solve a quadratic we are trying to find the X-1 trying or the place where the Parabola crosses the X-axis.

To find the solutions, roots, or zeros of a quadratic function (given as y = or f(x) =), substitute  $\bigcap_{x \in F(x)} for \bigvee_{x \in F(x)} since$ x-intercepts have a y-value of 0.

We have a total of 4 methods we will learn to solve quadratics – to help us find those X-Intercepts.

- 1. Factoring
- 2. Square Rost
- 3. Complete the Square
- 4. Quadratic Formula

One key to solving by factoring is the **Zero Product Property**: \* Have students Create a problem With product of O. Share to help them see one factor Mustbell.

if a.b=0 then a=0 or b=0

Examples - Apply the Zero Product Property to  $\frac{1}{2}$   $\frac{1}{2}$ 

$$(x^2 - 2) = 0$$

2. 
$$(x-5)(x-3)=0$$

3. 
$$x(x+3) = 0$$

4. 
$$0 = 2x(x - 9)$$

$$2X-5=0$$
  $X-3=$ 

$$2x=0$$
  $x=9=0$ 

$$X = -3$$
  $X = 2$ 

$$2X = 5 \quad X = 3$$

$$X = -3$$

$$X=5/2$$
 (3,0) (5/2,0)

Solve  $y = x^2 + 5x + 6$ 

## Steps:

1. Put the equation in Standard Form -  $ax^2 + bx + c = 0$ 

$$0 = X^2 + 5x + 6 \implies X^2 + 5x + 6 = 0$$

2. Factor the quadratic

3. Use the Zero Product Property (to set each factor equal to 0):

te the variable.

5. Write a solution set

## Examples:

1. 
$$f(x) = x^2 + 8x + 7$$

$$= X^2 + 8x + 7$$

$$= (X + 7) \times (X + 1)$$

$$= (X + 7) = 0 \quad (X + 1) = 0 \quad \text{Will}$$

$$= \frac{-7 - 7}{X = -7} \quad \frac{-1 - 1}{X = 1} \quad \text{Choss the}$$

$$= \frac{-7 - 1}{X = -7} \quad \text{Choss the}$$

$$= \frac{-7 - 1}{X = -7} \quad \text{Choss the}$$

$$= \frac{-7 - 1}{X = -7} \quad \text{Choss the}$$

$$= \frac{-7 - 1}{X = -7} \quad \text{Choss the}$$

$$= \frac{-7 - 1}{X = -7} \quad \text{Choss the}$$

$$= \frac{-7 - 1}{X = -7} \quad \text{Choss the}$$

$$= \frac{-7 - 1}{X = -7} \quad \text{Choss the}$$

$$= \frac{-7 - 1}{X = -7} \quad \text{Choss the}$$

$$= \frac{-7 - 1}{X = -7} \quad \text{Choss the}$$

$$= \frac{-7 - 1}{X = -7} \quad \text{Choss the}$$

$$= \frac{-7 - 1}{X = -7} \quad \text{Choss the}$$

$$= \frac{-7 - 1}{X = -7} \quad \text{Choss the}$$

$$= \frac{-7 - 1}{X = -7} \quad \text{Choss the}$$

3. 
$$y = 8x^2 + 2x - 3$$
  
 $0 = 8x^2 + 2x - 3$   
 $0 = (4x + 3)(2x - 1)$  \* Means the Palabola Will Choss the X=3  $2x = 1$  X=axis at  $(-3/4, 0)$  and  $(1/2, 0)$ 

5. 
$$x^{2} + 2x - 35 = 0$$
  
 $(x+1)(x-5) = 0$   
 $y=0 \quad x-5=0$   
 $y=0 \quad x=5=0$   
 $x=-1$   
 $x=-1$   
 $x=-1$ 

7. 
$$6a^{2} + 36a = y$$
 $6a^{2} + 36a = y$ 
 $6a^{2} + 36a = 0$ 
 $6a = 0$ 

4. 
$$2x^2 - 24x = -72$$
  
 $2x^2 - 24x + 9z = 0$  \* Means the parabula  
 $2(x^2 - 12x + 3b) = 0$  Parabula  
 $2(x - 6)(x - 6) = 0$  Will Cross the  $x - 6 = 0$   $x - 6 = 0$ 

6. 
$$f(x) = 4x^{2} - 9x + 2$$
  
0 =  $4x^{2} - 9x + 2$   
10 =  $4x - 1$  (x - 2)  
4x-1=0 x-2=0  
4x=1 x=2  
1/4,23

8. 
$$x^{2} + 30 = 7x$$
  
 $X^{2} - 9x + 30 = 0$   
 $(x - 3)(x - 10) = 0$   
 $x - 3 = 0$   $x - 10 = 0$   
 $x - 3 = 0$   $x - 10 = 0$   
 $x - 3 = 0$   $x - 10 = 0$   
 $x - 3 = 0$   $x - 10$ 

## Part 2: Writing a quadratic equation given the x-intercepts or solutions.

Solve each of the following quadratic equations.

Solve each of the following quadratic equations: 
$$f(x) = 2(x+3)(x-1) \qquad g(x) = -3(x+3)(x-1) \qquad h(x) = 0.5(x+3)(x-1)$$

Compare and contrast the equations for f(x), g(x), and h(x) as well as the solutions for the equations.

Many quadratic equations can have the same x-intercepts if the linear factors are the same, but the a values are different. When we are writing a quadratic equation from the solutions, we need to go through the process of solving for the solutions in reverse order. Additionally, we need to determine the a value that will force the parabola to pass through a specific point on the graph.

| Solve $y = 2x^2 + 20x + 32$       | Write an equation in factored form given the solutions                                           |
|-----------------------------------|--------------------------------------------------------------------------------------------------|
|                                   | x = -8 and $x = -2$ that passes through $(-3, -10)$                                              |
| $2(x^2 + 10x + 16) = 0$           | x + 8 = 0 and $x + 2 = 0$ (Write the linear factors by rearranging each equation to equal zero.) |
| 2(x+8)(x+2) = 0                   | y = a(x + 8)(x + 2) (Multiply the linear factors and place a as a possible GCF.                  |
| x + 8 = 0 and $x + 2 = 0$         | -10 = a(-3+8)(-3+2) Replace x and y with the values from the ordered pair.                       |
| x = -8 and $x = -2$               | -10 = a(5)(-1) Simplify                                                                          |
| they be received at the writing t | -10 = -5a Simplify                                                                               |
|                                   | 2 = a Solve for $a$ .                                                                            |
|                                   | y = 2(x + 8)(x + 2) This is the equation in FACTORED FORM.                                       |

Examples: Write a quadratic equation in factored form given the following x-intercepts and points on the parabolas.

1. 
$$\{-4, 5\}$$
 and passes through (1,40)

 $\chi = -4$   $\chi = 5$ 
 $\chi + 4 = 0$   $\chi - 5 = 0$ 
 $\chi = 4$   $\chi = 5$ 
 $\chi + 4 = 0$   $\chi - 5 = 0$ 
 $\chi = 4$   $\chi = 5$ 
 $\chi + 4 = 0$   $\chi - 5 = 0$ 
 $\chi = 4$   $\chi = 5$ 
 $\chi = 4$   $\chi = 2$ 
 $\chi = 4$ 
 $\chi = 4$