Name:

- I. Determine the value of C (number of unit block) that will create a perfect square. Then, write the trinomial as a perfect square.
- 1. $x^2 12x +$ 2. $x^2 + 15x +$ 3. $x^2 7x +$ 4. $x^2 + 20x +$
- II. Determine if each quadratic trinomial is a perfect square. If it is, rewrite the expression as a perfect share. If it is not, just write "not a perfect square."
- 5. $x^2 + 18x + 36$ 6. $x^2 - 14x + 49$ 7. $x^2 + 9x + \frac{81}{4}$
- II. The following quadratics are not perfect squares but can be rewritten in an equivalent form as a perfect square with an adjustment. For each problem complete parts a c.
 - a. Rewrite each expression as a perfect square with an adjustment remember this is vertex form!
 - b. Identify the vertex.
 - c. Use the table on your graphing calculator or Desmos to verify the expressions are equivalent. Record the values in the tables provided.
- 8. $x^2 + 6x + 10$ 9. $x^2 + 4x + 3$ 10. $x^2 - 8x + 11$

x	<i>y</i> ₁	<i>y</i> ₂
-2		
-1		
0		
1		
2		

x	y_1	y_2
-2		
-1		
0		
1		
2		

x	y_1	<i>y</i> ₂
-2		
-1		
0		
1		
2		

11. $x^2 - 6x - 2$

12. $x^2 + 20x - 1$

13. $x^2 + 5x + 12$

x	<i>y</i> ₁	<i>y</i> ₂
-2		
-1		
0		
1		
2		

x	y_1	y_2
-2		
-1		
0		
1		
2		

x	<i>y</i> ₁	<i>y</i> ₂
-2		
-1		
0		
1		
2		