READY

Topic: a_{n} notation for sequences

1. The sequence below shows the number of trees that a nursery plants each year.

$$
2,8,32,128 \ldots
$$

Let a_{n} represent the current term in the sequence and a_{n-1} represent the previous term in the sequence. Which formula could be used to determine the number of trees the nursery will plant in year n ?
A) $a_{n}=4 a_{n-1}$
B) $a_{n}=\frac{1}{4} a_{n-1}$
C) $a_{n}=2 a_{n-1}+4$
D) $a_{n}=a_{n-1}+6$
2. Given the sequence defined by the function $a_{n+1}=a_{n}+12$ with $a_{1}=4$, write an explicit function rule.
3. Given the sequence defined by the function $a_{n+1}=\frac{3}{4} a_{n}$ with $a_{1}=424$, write an explicit function rule.

Lesson 1
SET
Topic: Simplifying algebraic expressions using properties of exponents

1. $a^{3} \cdot a^{5}$	2. $7 x^{7} \cdot 9 x^{6}$	3. $5 v^{2} \cdot 5 v^{2}$
4. $\underline{9^{7}}$		6. $-\frac{42 y^{6}}{3 y^{6}}$
4. $\overline{9^{4}}$	5. $\overline{3 y^{5}}$	6. $-\frac{3 y^{6}}{3}$
$\text { 7. } \frac{c^{5}}{c^{7}}$	8. $g^{5} \cdot g^{-7}$	9. $\left(g^{-3}\right)^{-5}$
10. -12^{0}	11. $(x y)^{4} x^{8} y^{2}$	12. $\left(x^{2} y^{5}\right)^{4}\left(x^{8} y^{2}\right)$
13. $\left(\frac{a^{5} b^{4}}{a^{2}}\right)^{8}$	14. $\left(\frac{x^{3} y^{0}}{x^{7} y^{7}}\right)^{9}$	15. $\left(\frac{4 x^{6} 3 y^{3} z^{5}}{6 x^{8} 2 z^{4}}\right)^{2}$

GO!

Topic: Solving two-step equations

1. $4 x+3=15$
2. $2 x-6=12$
3. $4=\frac{1}{2} x-3$
4. $-3 x+8=-7$
5. $\frac{2}{3} x+5=1$
6. Create a two-step equation whose solution is 8 .
