Unit | Lesson | Homework

- - 14. ____Every irrational number is rational

III. Use checks to show whether or not the given real number belongs to that set:

Real	Natural	Whole	Integer	Rational	Irrational
3					
-25					
$\sqrt{8}$					
5					
$-\frac{7}{7}$					
0.141523					
-9.39					
0					
$2\frac{1}{2}$					
$\sqrt{16}$					
15					
3					

IV. Simplify the expression

1.
$$3 \cdot 2 + \frac{5}{9}$$
 2. $2 \cdot 3^2 \div 7$ 3. $7[(18 - 6) - 6]$

4.
$$3(2.7 \div 0.9) - 5$$
 5. $\frac{5^{3} \cdot 2}{1 + 6^2 - 8}$

6. $\frac{(9-7)^2+3}{8-3} = (9-7)^2 + 3 \div 8 - 3$. Are these expressions equivalent? Please justify your answer.