\qquad
Make your thinking visible (algebraic mapping or graphs). Attach paper if necessary.

1. Graph $\triangle \mathrm{ABC}$ with $\mathrm{A}(-2,5), \mathrm{B}(1,5), \mathrm{C}(1,9)$.

Reflect $\triangle \mathrm{ABC}$ over $\mathrm{y}=2$ and then reflect the image over $\mathrm{y}=-6$.
What single rule describes the composition of reflections over parallel lines?
2. Which of the mapping rules represents the rigid motion described in the statement?
$\triangle A B C$ is reflected over the line $y=x$ and then translated up 4 units.
A. $f(x, y)=(y+4, x+4)$
B. $f(x, y)=(y+4, x)$
C. $f(x, y)=(y, x+4)$
D. $f(x, y)=(y, x-4)$
3. $\overline{A B}$ has endpoints $A(5,1)$ and $B(1,-3)$. The segment will be reflected over the x -axis and then reflected over the y axis producing an image segment. Which additional transformation will map the image segment back onto the original segment?
A. Translation six units right and two units down
B. Rotation 180° around the origin
C. Reflection across the line $y=x$
D. Reflection across the line $y=-x$
4. Point A was translated three units to the right and four units down and then reflected across the line $y=-x$ to produce $A^{\prime \prime}(0,7)$. Determine the coordinates of point A .
5. Trapezoid AFHS is located at $A(-10,2), F(-8,2), H(-8,5), S(-11,5)$. The trapezoid is reflected over $x=-8$. This image is rotated 180° about the origin. The resulting image in then translated up 4 units and left 16 units. What additional transformation is necessary to map the final image back onto trapezoid AFHS?

